
aa-cell IN PRACTICE:
AN APPROACH TO MUSICAL LIVE CODING

Andrew Sorensen Andrew R. Brown
MOSO Corporation
Brisbane, Australia

andrew@moso.com.au

Computational Arts Research Group
Queensland University of Technology

Brisbane, Australia
a.brown@qut.edu.au

ABSTRACT

Live coding performances provide a context with
particular demands and limitations for music making. In
this paper we discuss how as the live coding duo aa-cell
we have responded to these challenges, and what this
experience has revealed about the computational
representation of music and approaches to interactive
computer music performance. In particular we have
identified several effective and efficient processes that
underpin our practice including probability, linearity,
periodicity, set theory, and recursion and describe how
these are applied and combined to build sophisticated
musical structures. In addition, we outline aspects of our
performance practice that respond to the
improvisational, collaborative and communicative
requirements of musical live coding.

1. INTRODUCTION

For the past two years we have been performing as aa-
cell, a live coding duo, in regular concerts around
Australia. Our performances are semi-improvised
collaborations using the Impromptu environment,
developed by Andrew Sorensen.
 Live coding is a practice where software that
generates music and/or visuals is written and
manipulated as part of the performance. It emphasises
the expressive possibilities afforded by programming
languages as a means for defining and manipulating
music and/or visual processes. Live coding of music is
a-stylistic in principle, although as with all practice, a
chosen medium leaves its imprint on output. In this
paper we will explain how we manage the effect of
medium and intent in our musical practice.
 Collaborative live coding places particular demands
on the creative process because it requires a shared
vocabulary to facilitate directed musical exploration. In
this paper we will outline the results of our approach to
working effectively within the constraints of our
practice in the hope that the techniques we have
developed (or accumulated) will inform other computer
musicians and, perhaps more importantly, may highlight
issues regarding, a) parsimonious computational
representations of music and, b) practical approaches to
interactive computer music.

2. BACKGROUND

Discussions of live coding as a practice have come to
the fore in recent years [14][3][10][13]. The practice of
live coding, building code structures during
performance, is similar to what Wang and Cook [33] call
on-the-fly-programming, and McLean [13] refers to as
just-in-time programming. Most of these discussions
have focused on the dynamic nature of live coding and

how various programming environments have been
developed to facilitate live coding. They emphasise the
need for a highly interactive environment, the ability to
dynamically vary processes at runtime, and a strong
concern for robust and flexible timing structures. In this
paper we will discuss how we exploit these and other
features of the Impromptu environment and leave
detailed technical discussion about how this is achieved
to other previous [27] and forthcoming papers.
 With regard to live coding practice some approaches
and issues are discussed by Collins [14] and Collins and
Olofsson [15]. Collins [14] focuses especially on the
performer/audience relationship and aa-cell adopt a
similar stance to that suggested by Collins (after
McLean [13]) where code is projected and other
measures are taken to engage the audience. The article
by Collins and Olofsson is particularly concerned with
their audio visual live coding and the capture,
segmenting and synchronizing of audio and visual
material during performance. In aa-cell’s practice (so
far) there is no coding of visuals, however,
synchronisation is important to our collaboration even
though it is more directed and less agent-based than that
discussed by Collins and Olofsson.
 Looking further afield, aa-cell’s live coding practice
is informed by work in interactive music [25] [32] and
hyperimprovisation [17] with which it shares an interest
in the role of the computer in live performance. Our
approach differs from this work not only in its “on the
spot” programming but also with regard to the role of
the computer. Our practice is less concerned with
instilling the machine with musical “intelligence” to
listen and respond, and is more akin to composition in
real-time. The literature on algorithmic composition is,
therefore, a rich source of inspiration for our work
(Hillier and Isaacson [20], Xenakis [34], Berg [1],
Dodge and Jerse [19], Cope [16], Taube [30]).
 The approach of aa-cell to live coding combines
composition and performance practices. This is in
contrast to the batch-compile process that Paul Lansky
once referred to as “sort of improvising in real-slow
time” [9]. Rather, live coding for aa-cell is composition
in real-time. However, it is not enough to simply
consider the compositional aspects of the process. Live
coding is a performance practice and we must also
control the algorithmically generated material.
 Our approach revolves around setting up generative
processes, and the dynamic nature of live coding allows
the performer to direct these processes. Live
programmers not only write the code used to generate
the music, they also constantly change and modify the
behavior of that code dynamically throughout the
performance. In this way the live programmer controls
higher level structure, directing processes like a
conductor directs an ensemble.

mailto:andrew@moso.com.au
mailto:andrew@moso.com.au
mailto:a.brown@qut.edu.au
mailto:a.brown@qut.edu.au

 This is, for us, one of the most interesting aspects of
our performance practice. The programmer is intimately
involved in not only defining the process (as in standard
computer music programming practice) but also in
controlling its execution and evolution.
 This focus on directing a real-time musical outcome
through code has required us to seek out flexible
computational control structures, and simple processes
that can be combined to yield rich musical results. In
particular we have settled on probability, linearity,
periodicity, set theory, and recursion as useful
techniques. While these techniques are not unique, we
have settled on them after exploration of numerous
approaches [26][4][5][6][7][8]. We have found that by
re-engaging with these techniques in a dynamic
performance context we achieve new levels of intimacy
with these processes and with code as a medium of
musical expression.

3. MUSICAL COMPUTATIONS

The search for pattern and structure in music has
produced a large body of research from both the
computer music community and the music theory
community at large. Generally this research has been
focused on analysis, an identification of structure after
the fact. While this is an important approach (much
maligned by undergraduate music students) the
structural descriptions can often be quite detailed, and
live coding requires succinct description. As well, many
of the results of music analysis are contextually limited,
whereas for live coding we need the power of fewer
generic methods wherever possible.
 Overall, succinct representation has become a
central tenant of our live coding practice. The
limitations of how much typing can be done during a
live performance mandate parsimonious solutions for
both musical and systems design considerations. As well
the improvisational nature of the practice demands that
techniques are memorised, so the utility of a limited set
of processes across a variety of circumstances is
important.
 Also of importance is modularity. In aa-cell’s live
coding practice performances are constructed by
building up complexity over time. In order to facilitate
this process, it has been necessary to have a set of
techniques that can be combined in a variety of ways to
form musical patterns at multiple levels of hierarchy. In
a sense, these form the atomic elements of our musical
construction.

 Live coding practice requires that we become fluent
with these tools, so that we are free to concentrate on
musical, rather than technical, expression. In a sense
these base processes have become the symbols of a new
dynamic scoring environment based in code, to be
manipulated symbolically as composers may manipulate
structures in more traditional common practice notation.
 Far from feeling restricted by simpler techniques,
we have been energised by this re-engagement with
elementary processes. These primary functions have re-
introduced an intimacy of process and a connection with
medium; often lost in the higher level abstractions of
more complex processes. This effect maybe due to a
forced return to a more restricted compositional tool-set,
a release from the tyranny of choice, or possibly due to
our perception of a closer fundamental relationship to
structure. Whatever the deeper reasoning, this
parsimonious approach has resonated with us and has
resulted in a live-coding vocabulary centred around
elementary notions of probability, linearity, periodicity,
set theory, and recursion. We will briefly explore some
of these “atomic” processes and provide some practical
examples of their use in aa-cell’s practice.

3.1. Probability

It is 50 years since Leonard Meyer wrote “Emotion and
Meaning in Music”, a seminal work in the field of music
perception. In this work, Meyer [23] contends that
musical style is a system of sound relationships
commonly understood and used by a group of people.
He describes these sound relationships as “complex
systems of probability relationships in which the
meaning of any term or series of terms depends upon it’s
relationships with all other terms possible within the
style system” [23]. Computer music composers and
theorists have made extensive use of probabilistic
techniques from the birth of computer music in the
1950’s [20] through to the present [31][21]. we draw on
this heritage to make extensive use of probabilistic
techniques in our live coding practice.
 One revealing approach that we have found is the
“random” test. If we replace algorithm X with a random
number generator, do we achieve any degradation in
output and, if so, what scale of degradation? What is the
musicality of algorithm X compared to noise? In our
explorations to date we have found this to be an
extremely revealing test. Our experience suggests that
many algorithms, especially those not derived from
music analysis, do poorly in this test. Often we have
found that the mapping of data to parameters is more
musically significant than the data being consumed.
 As a result we have found that simple probabilistic
functions, in particular linear and gaussian distributions,
can provide effective variety and interest. It is worth
noting that our use of probability is often subtle and
usually highly constrained. Randomness provides two
useful functions in our practice, 1) the function of non-
determinism for the provision of structural novelty and
variation and, 2) the less commonly discussed role of
abstraction, where it provides the most practical means
for abstracting away many of the details of performance
nuance and human inaccuracy. We do not mean to
suggest that a simple random selection is the best
computational mechanism for handling performance
parameters; only that when used subtly it can often

Figure 1. The Impromptu development environment

provide adequate variation, making it a useful tool for
live programming.

;; A Simple diatonic progression - 1st Order Markov
(define chords
 (lambda (degree)
 (play-chord 60 80 3
 (pc:diatonic 0 '^ degree)
 second)
 (callback (+ (now) *second*) 'chords
 (random (cdr (assoc degree
 '((i v7 iv ii)
 (ii v7)
 (iv ii v7 i)
 (v7 i))))))))

 The example above demonstrates how simple
probabilistic techniques can be used to succinctly realise
musical goals. A simple first order Markov model from
diatonic musical theory provides a simple process for
harmonic progression. Most of the examples that follow
will also make use of probability.

3.2. Linear & Higher Order Polynomials

In his book “Structural Functions in Music”, Wallace
Berry [2] outlines some of the relationships between
Linear function and musical structure. He discusses
these relationships in pitched, rhythmic and timbral
material at multiple perceptual levels [2]. Linear
functions are generally applied to abstract
representations of features that are often based on
perceptual scales, even if the underlying physical
properties are non-linear. For example, chromatic or
diatonic pitch organisation can be linear even though
pitch frequency relationships are not. aa-cell use linear
functions extensively across all musical elements; pitch,
duration, amplitude, timbre and so on. We also make use
of higher order polynomials and splines.
 Linear functions are often applied via break point
envelopes to provide temporal structure at many levels
in an aa-cell performance, ranging in duration from
milliseconds (microstructure) to an entire work
(macrostructure) [34]. The code below demonstrates a
simple looped pitch cell generated from an envelope.
Although this is a trivial example it does outline two
important practical benefits that envelopes provide for
outlining pitched material; (a) they naturally coordinate
rhythmic and pitch variation and (b) by changing the
modulus values it is possible to loop subsections of the
envelope as a method of motivic development.

;; simple pitch quantized envelope
;; with randomized rhythmic performance
(define melody
 (lambda (env pos)
 (play-note (now) zeb1
 (pc:quantize (floor (env (fmod pos 8)))
 '(0 2 4 5 7 9 11))
 80 3000)
 (callback (+ (now) (random '(7500 5000)))
 'melody env
 (+ pos (random '(.25 .5))))))

(melody (make-envelope (vector 0 60 3 72 5 79 8 60))
 0)

 Often aa-cell use pitch envelopes in conjunction
with a gaussian-random whose mean follows the

envelope and whose standard-deviation is either fixed or
changed over time by an auxiliary envelope, with the
final result often quantised to a pitch class set.
 Some of our other common applications of
polynomial functions include using two curves for
tendency masks, specifying upper and lower boundary
conditions [1] and for controlling synthesis parameters.

3.3. Periodic Functions & Modular Arithmetic

Another family of functions common to musicians are
the periodic functions. We exploit periodic functions as
a means for generating structure in all aspects of
musical form - pitched, rhythmic, structural and timbrel.
These functions have a range of applications for the live
coder, including metric pulsation and pitch cell
extraction as well as more common usages such as low
frequency oscillation for timbrel (synthesis) variation.
Like polynomial functions, periodic functions can
provide subtle contours through to grandiose gestures
and when combined with various probabilistic tricks can
produce engaging performance results.
 One aspect of periodic structure that aa-cell
regularly exploit is the “composers pulse” [11]. By
mapping a cosine function to amplitude it is possible to
provide a metric pulse to a regular pattern. Multiple
levels of metric information can be easily provided by
mapping multiple periodic functions simultaneously.
Further, Clynes [11] showed that these same functions
can be applied to other rhythmic elements such as note
duration and tempo. In fact our experience suggests that
it is only through interaction at multiple musical
dimensions that an engaging musical performance is
obtained.
 One common aa-cell application is to use a cosine
function on note amplitude to provide a metric pulse to a
regular pattern, such as a hi-hat part. Modifying the
period of the oscillation probabilistically produces
subtle yet engaging syncopation in the rhythmic pattern.
 Another, pitch based trick, is to use an oscillator for
selecting drum samples, occasionally changing the
oscillation rate in order to modify the drum pitch
pattern, while retaining a constant rhythmic pattern. As
with most of aa-cell’s live coding techniques the interest
in these simple structures comes from a combination of
constant localized change and larger scale regularity.
The example below uses an oscillator to choose drum
samples and amplitudes.

;; a trivial drum machine
(define drum-machine
 (lambda (time p)
 ;; period drum pattern changes each 4 beats
 (play-note (now) kit
 (+ 50 (* 6 (* cos (* time p pi))))
 (+ 60 (* 20 (* cos (* time p pi))))
 2000)
 (case (fmod time 4.0)
 ((0 2.5) ;; kick
 (play-note (now) kit *kick* 80 5000))
 ((1 3) ;; snare
 (play-note (now) kit *snare* 80 5000)))
 (callback (+ (now) 11025) 'drum-machine
 (+ time .25)
 (if (= 0 (fmod time 4.0))
 (random '(2 3 4 5))
 p))))

 Modular arithmetic is another tool which aa-cell use
to control the regular cycles common to musical
structure. The example above demonstrates the use of
modulus for locating the beat position within a 4/4 bar.

3.4. Set Theory (Pitch Class Sets)

Set theory has become a standard tool in 20th Century
music composition [29]. aa-cell make extensive use of
set theory for manipulating pitch space (tonal or
otherwise) [22]. Pitch Class Sets (PCS) provide a simple
yet powerful tool for manipulating musical patterns.
 By applying common musical devices such as
inversion, expansion/contraction, retrograde and
transposition to a musical cell, or motif, and then
filtering the output though a PCS quantisation process it
is possible to rapidly develop interesting musical
sequences with high level structural control. The simple
example below outlines the probabilistic, two octave
transposition of a musical *cell* within the bounds of
pcs.

(define *cell* '(60 62 63)s)
(define *pcs* '(0 3 7 8 10))

;; random two octave transposition of *cell*
;; with random choice of mutation to *cell*
(pc:transpose
 (random -7 7)
 (random (list *cell*
 (invert *cell*)
 (retrograde *cell*)
 (expand/contract *cell*
 (* 5 (random)))))
 pcs)

3.5. Recursion & Iteration

Recursion and iteration provide many opportunities for
repetition, evolution, pattern programming and
grammars, and they are fundamental to notions of
computational time.
 Like almost anything we can conceive of, it is
possible to think of music as a collection of processes

arranged in some form of hierarchical structure that
unfolds through time. To a large extent it is the
arrangement of these processes that defines the
organisation of sound that we describe as music. As
Wallace Berry notes, “Musical structure may be said to
be the punctuated shaping of time and space into lines of
growth, decline and stasis hierarchically ordered.” [2 pp.
5].
 Our live coding makes extensive use of
Impromptu’s ability to precisely schedule closures (a
function and its environment) for future invocation. The
ability to schedule functions self referentially was first
discussed by D. Collinge in reference to his Moxie
system [12]. Using this mechanism functions1 may
continuously re-schedule their own invocation. The
ability for a function to call itself self referentially is the
basis of recursion. Impromptu supports scheduled
recursions which move through time at a governed rate,
we refer to these as “temporal recursions.” Impromptu
uses the callback2 function to provide this functionality.
 The asynchronous nature of Impromptu’s temporal
recursion model results in a natural cooperative multi-
tasking whereby multiple temporally recursive
processes operate in a quasi-concurrent manner.
Musically, this means that we can have numerous
independent musical lines running in parallel. By
retaining their arguments between invocations, temporal
recursions can maintain their state. This provides an
intuitive and encapsulated mechanism for maintaining
change over time.

;; play a one octave chromatic scale
(define scale
 (lambda (pitch)
 (play-note (now) synth pitch 80 8000)
 (if (< pitch 72)
 (callback (+ (now) 10000) 'scale
 (+ pitch 1)))))

;; start scale on middle C
(scale 60)

1 Impromptu also allows continuations to be scheduled providing functionality similar to a co-routine.

2 Impromptu’s callback is similar to Moxie’s cause function

Figure 2. aa-cell in performance.

 We make extensive use of temporal recursion in our
practice, providing us with three primary advantages.

3.5.1. On-the-fly modification of code

 The first advantage is the ability to redefine a
temporally recursive process on-the-fly. Because the
scheduler will always invoke the most recent definition
of any given function, aa-cell can modify the behavior
of a temporal recursion by simply redefining the
behavior of it’s target function. This is a simple and
intuitive behavior inherent in Impromptu’s temporal
recursion model and allows real-time programmers to
build, extend and modify code on-the-fly.

3.5.2. Constantly adjustable control rate

 A second major advantage of temporal recursion is
the ability to change the rate of recursion. When a
function schedules itself for future invocation it
specifies a delay time. This delay time can be adjusted at
any stage, either through random variation, or some
other deterministic process and, through this change,
modify the rate of recursion. The most trivial application
of this ability is to playback a series notes where
arguments to the function provide new pitch and
duration information. The pitch and duration are used to
render a note, and then the duration is again used to
specify the time of the next invocation of the function.
Suitably modified arguments are retained for the next
invocation.

;; a chromatic one octave random walk
;; crotchet and quaver rhythm in samples
(define melody
 (lambda (pitch duration)
 (play-note (now) piano pitch 60 duration)
 (callback (+ (now) duration)
 'melody
 (range-limit (+ pitch (random -1 2))
 60 72)
 (random '(22050 44100)))))

;; start the temporal recursion
(melody 60 44100)

 What makes this such a valuable technique is its
inherent just-in-time behavior, vital in live coding
practice as it defers computation and facilitates complex
interplay between concurrent processes.

3.5.3.Temporal graphs

 The third major advantage of temporal recursion is
the ability to modify a temporal recursion’s target
closure on-the-fly. This is a powerful technique that aa-
cell use to control higher level structure in live
performance. By altering the “course” of a temporal
recursion—by modifying the target function of the
callback—it is possible to change a processes direction
in a trivial manner. At it’s simplest one can think of an
example whereby two functions have an equal chance of
calling themselves, or their opposite, setting up a
temporal recursion which moves, with a probabilistic
weighting between two functions. There is, however, no
reason to limit the available paths to only two choices
and more sophisticated decision mechanisms can be
used. This is somewhat analogous to timed Petri Net’s
and can be used to implement Markov processes,
augmented transition networks or other graph-like

structures where functions operate as nodes with
transitions to arcs defined by callback functions.

;; func-a always repeats 10 times
;; then calls back to func-b
(define func-a
 (lambda (cnt)
 (print "in func a" cnt)
 (callback (+ (now) 1000)
 (if (> cnt 9) 'func-b 'func-a)
 (if (> cnt 9) 0 (+ cnt 1)))))

;; func-b has a 50/50 chance
;; of calling into func-a or func-b
(define func-b
 (lambda (cnt)
 (print "in func b" cnt)
 (callback (+ (now) 1000)
 (random '(func-a func-b))
 cnt)))

;; start temporal recursion
;; note that we can call func-a
;; multiple times to start
;; multiple concurrent recursions
(func-a 0)

 The code example above demonstrates a simple
temporally recursive transition network. The network
contains two nodes, the functions part-a and part-b, each
maintaining it’s transition conditions specified within
the callback function. In this example, func-a is called
and must recall itself ten times before passing control
(calling) to part-b, which then has a 50/50 chance of
calling itself or calling back into part-a. This simple
technique provides a useful mechanism for building
higher level musical structure on-the-fly.

4. PERFORMANCE PRACTICES

In addition to the computational approaches inherent in
aa-cell’s practice, there are a number of performance
considerations that do not impact so much on the
musical result but on the effectiveness and presentation
of performances.

4.1. Code Expansion

One problem that all live programmers must deal with is
how to physically type the required code within a
reasonable period of time; reasonable for both the
audience but, probably more importantly, to assist the
performer to more rapidly realise ideas.
 In addition to the parsimonious and efficient
algorithmic descriptions discussed in section 3, an
obvious way to deal with this issue is to abstract away
as much detail as possible into pre-built functions and
libraries. This “preparation” is an important aspect of
live-coding and aa-cell regularly spend time working on
library code. However, the downside with this approach
is that abstracting away the ideas restricts our ability to
change, modify and re-evaluate the code during the
performance. We spend a good deal of any given
performance modifying and extending code structures,
in fact a performance may well be based around the
constant manipulation of a single temporal recursion.
 Given that code is our medium, and that abstracting
away code reduces our range of expression we have
been using code expansion as a complimentary

technique to functional abstraction. Code expansion
allows aa-cell to program the essential elements of an
expression and abstract away the remaining details to a
code template. The template generates code based on the
arguments supplied to the template. Once the generated
code is pasted into the environment we can interact with
it as normal; executing, extending and running it as we
would any other code. Our code expansions cover a
basic set of regular usage patterns including melodic,
chordal and rhythmic structures. Code expansion
provides aa-cell with an efficient mechanism for
customising common usage patterns and has proven
itself to be a huge benefit in performance as it allows us
to concentrate on the essential details without having to
worry about writing boiler plate code.

4.2. Non-programmable control

While text programming languages can be an effective
medium for expressing processes and structures, their
textual nature makes them less capable of handling rapid
change. The issue of rapid change in live programming
is of continuing concern for live programmers. As
Fredrik Olofsson states, “I feel I’d have to rehearse a lot
more to be able to do abrupt form changes” [24]. In our
experience the problem may be more intractable than
this. While we have been able to find methods, such as
code expansion and functional abstraction, for
adequately reducing the time spent defining higher level
formal structures, there is a severe physical limit to the
amount of immediate change available in a text based
environment. To be clear, we are not suggesting that
immediate change cannot be “programmed”, we do this
regularly, but as live programmers our ability to respond
immediately is limited by the time required to make and
evaluate source code changes.

4.2.1.Editor tools

 We ameliorate this situation, in part, by providing
functionality in the text editing environment. For
example, Impromptu allows programmers to set up to
ten mark points. These marks can be set, moved to and
have their underlying expressions evaluated with key
bindings. This provides for rapid movement around the
text editing environment and allows programmers to
evaluate text that maybe located outside of the current
viewable text region or even in another text buffer.

4.2.2.External controllers

 Text editing features only go so far in providing
real-time programmers with the ability to affect
immediate change. To augment, or provide better
gestural control, we can also employ external control
surfaces with various dials, faders, buttons and so on.
Impromptu can communicate to these via MIDI or OSC
as required. We have developed code libraries to
facilitate the direct assignment of external controllers to
pre-bound global symbols. In practice this allows aa-cell
to trivially assign controller values to arbitrary code,
providing real-time gestural control at any point in our
code.

;; play a series of notes with random pitch
;; bounded by the current value of
;; controller 1 and controller 2
(define melody
 (lambda ()
 (play-note (now) piano
 (random ctrl1 ctrl2)
 60 22050)
 (callback (+ (now) 22050) 'melody)))

 In particular we have found that control surfaces
with motorised controllers allow two way
communication between musician and computer.
Manual control can update assigned values, and
programatic variations can be reflected in automated
movement of the motorised controllers.
 It is worth emphasising that the interactive, real-
time influence exerted on the generative algorithms at
play is, we believe, central to our live coding practice.

4.3. Colaboration & Communication

Like any performance practice, live coding requires
coordination between the performers and consideration
of how the audience relates to the performance practice.

4.3.1. Collaboration

 The major consideration regarding collaboration
between performers in aa-cell relates to synchronisation,
timing and data sharing. At a global level this often
includes tempo, meter, harmonic progressions and other
structural features. Impromptu supports a number of
mechanisms for communication between remote hosts.
 In recent years Open Sound Control (OSC) has
become a de-facto standard for musical communication
and provides a convenient mechanism for
communication between Impromptu hosts and a variety
of other computer music tools supporting the OSC
protocol.
 Impromptu also offers an Inter Process
Communication (IPC) mechanism for communication
directly between remote processes. This provides a
powerful mechanism for sharing and executing code
across remote Impromptu hosts. In practice this allows
aa-cell to share functions and global variables during a
performance. More specifically the IPC mechanism
allows us to define functions and variables in each
other’s Scheme interpreter. Unfortunately this powerful
feature is limited without the ability to view and edit the
associated source code.
 In order to resolve this issue, aa-cell anticipate the
future addition of a collaborative text editing
environment to the Impromptu IDE3. This would
provide live programmers with the ability to work
collaborative on a single source code file
simultaneously. We anticipate this to be a significant
addition that would allow live programmers to work
together in a more substantially collaborative
environment. However, that said, aa-cell also enjoy
exploring the separation of environments.
 Impromptu’s precise timing and interactive
environment encourages users to “perform.” By this, we
mean that aa-cell often work without the safety net of
networked time codes, shared harmonic structures etc.
and instead concentrate on performing our individual

3 For a good example of collaborative text editing see the SubEthaEdit text editor http://www.codingmonkeys.de/subethaedit/

http://impromptu.moso.com.au/
http://impromptu.moso.com.au/

environments by manually timing the execution of code,
manually adjusting tempo and metre, and interacting in
a constant dialogue of harmonic and timbrel change
within a vocabulary of shared musical queues. No doubt
our continued exploration of live coding practice will
continue to oscillate between fixed and freer forms of
coordination.

4.3.2. Audience Communication

 In order to enhance the audience appreciation of aa-
cell performances we have adopted a number of
performance conventions. As has become standard in
live coding practice we project the computer displays so
that the audience can see the code being typed. We try to
make the code as legible as possible.
 However, even with a strongly technical audience,
complete comprehension of the generative ramifications
of the source code being run during a performance is
challenging. Knowledge of the programming language,
the environment, the algorithms used, musical, sonic
and more general cultural knowledge, even knowledge
of individual performers practice are all necessary for a
complete mapping of the projected code to the musical
outcome. Consequently, most audiences will struggle to
fully realise the connections between the code and any
generated material.
 Critics of live coding have suggested that this makes
the projection of the source code an unnecessary and
intrusive endeavor. Our experience is that despite
people’s inability to understand the detail of the code,
they appreciate that the work is being built up as it
proceeds and seem to enjoy participating in identifying
symbolic queues. To this end we make an effort to use
function and variable names that people will recognise
and that may assist in their interpretation of the code.
Symbol names such as “outrageous-kick” and “grunge-
it-up” never fail to communicate our intent! Regardless
of the audiences’ level of understanding, code projection
highlights to the audience that structures are coded
during the performance. This is particularly important at
this early stage in the development of live coding as a
musical practice.
 To further enhance the appreciation that live coding
builds structure on the fly we always start our
performances with a blank text editor. We feel that the
growing complexity of the typed code paralleled by the
increasing complexity of the sonic outcome helps to
articulate the building process to the audience. In
addition, the Impromptu environment has text hi-
lighting features that not only assist the programmer, but
the audience to see where the programmers attention
(cursor) is positioned and to indicate when functions are
evaluated.

5. CONCLUSION

In this paper we have outlined the theoretical and
practical aspects that are significant in our live coding
practice as aa-cell. The paper has focused particularly on
processes related to musical structure and event level
considerations and discusses some of the techniques that
aa-cell have found useful for defining musical processes
in a live coding performance.
 We are certainly not the first people to discuss the
usefulness of simple mathematical functions for
modeling musical behaviors and it is perhaps

unsurprising that aa-cell would find these functions
useful in our practice. What has been a surprise to us,
however, is just how much utility a small set of
processes have provided. It is possible that our success
with these simple functions is due to our manual control
of higher level structure through our manipulation of
running process, but it may also point to a more
profound revelation about parsimonious computational
representations of music and improvisational
performance. We hope to expand more on these ideas in
the future.
 Many of the performance aspects of live coding
practice are still being hotly debated and aa-cell are still
actively considering the pro’s and con’s of various
performance related issues. However, we feel confident
that as the practice matures, and audiences become more
familiar with this new practice, these issues will resolve
themselves. In the mean time we are busying ourselves
with music making.
 This article has provided several brief, and
necessarily trivial code examples. We have provided a
web page http://impromptu.moso.com.au/icmc-
examples.html with supplementary material relating to
this paper, including expanded code examples and
related audio recordings. We hope this will provide
more compelling documentation for the interested
reader. Screen casts of complete live coding
performances can also be found on the Impromptu
website [28].

6. REFERENCES

[1] Berg, P. 1996. Abstracting the Future: The
search for musical constructs. Computer Music
Journal 20(3): 24-27.

[2] Berry, W. 1976 “Structural Functions in Music”
General Publishing Company Limited
Toronto,Ontario. 1987 Publishing by Dover
Mineola, NY.

[3] Blackwell, A. and Collins, N. 2005. The
Programming Language as a Musical
Instrument. In P. Romero, J. Good, E. Acosta
Chaparro and S. Bryant (eds.) Proceedings of
the 17th Workshop of the Psychology of
Programming Interest Group. Sussex
University, pp. 120-130.

[4] Brown, A. R., Towsey, M., Wright, S. and
Diederich, J. 2001. Statistical analysis of the
features of diatonic music using jMusic
software. Proceedings of the Computing Arts
2001: Digital Resources for Research in the
Humanities. Sydney, pp.

[5] Brown, A. R. 2002. Opportunities for
Evolutionary Music Composition. In P.
Doornbusch (ed.) Proceedings of the
Australasian Computer Music Conference.
Melbourne: ACMA, pp. 27-34.

[6] Brown, A. R. 2004. Playing with Dynamic
Sound. In E. Edmonds and R. Gibson (eds.)
Proceedings of the Interaction: System,
Practice, Theory. Sydney: Creativity and
Cognition Studios Press, pp. 435-450.

http://impromptu.moso.com.au/icmc-examples.html
http://impromptu.moso.com.au/icmc-examples.html
http://impromptu.moso.com.au/icmc-examples.html
http://impromptu.moso.com.au/icmc-examples.html

[7] Brown, A. R. 2004. An aesthetic comparison of
rule-based and genetic algorithms for
generating melodies. Organised Sound 9(2):
191-198.

[8] Brown, A. R. 2005. Exploring Rhythmic
Automata. In F. e. a. Rothlauf (ed.) Proceedings
of the Applications of Evolutionary Computing:
EvoWorkshops 2005. Lausanne, Switzerland:
Springer, pp. 551-556.

[9] Brown, A. R. 2003. Music Composition and the
Computer: An examination of the work
practices of five experienced composers. PhD
dissertation. Brisbane: The University of
Queensland.

[10] Brown, A. R. 2006. Code Jamming. M/C
Journal 9 (6) . h t tp : / / journa l .media-
culture.org.au/0612/03-brown.php

[11] Clynes, M. 1984 The secret life of music. In
Proceedings of the 1984 International
Computer Music Conference. San Francisco:
ICMA

[12] Collinge, D. J. 1984 MOXIE: A Language for
Computer Music Performance. In Proceedings
of the 1984 International Computer Music
Conference. San Francisco: Computer Music
Association

[13] Collins, N., McLean, A., Rohrhuber, J. and
Ward, A. 2003. Live Coding in Laptop
Performance. Organised Sound 8(3): 321-330.

[14] Collins, N. 2003. Generative Music and Laptop
Performance. Contemporary Music Review. 22
(4): 67-79.

[15] Collins, N. and Olofsson, F. 2006. klipp av:
Live Algorithmic Splicing and Audiovisual
Event Capture. Computer Music Journal. 30(2):
8-18.

[16] Cope, D. 2000. The Algorithmic Composer.
Madison: A-R Editions.

[17] Dean, R. 2003. Hyperimprovisation: Computer-
Interactive Sound Improvisation. Middleton: A-
R Editions.

[18] Desain, P. & Honing, H. 1993. Tempo curves
considered harmful∗. In Time in contemporary
m u s i c a l t h o u g h t J . D . K r a m e r (e d .) ,
Contemporary Music Review. 7(2). 123-138.
Pre-printed in: Desain, P. & Honing, H. (1992).
Music, Mind and Machine. Studies in Computer
Music, Music Cognition and Artificial
Intelligence.Amsterdam: Thesis Publishers.

[19] Dodge, C. and Jerse, T. A. 1997. Computer
Music. New York: Schirmer Books.

[20] Hiller, L. and Isaacson, L. 1992. Musical
composition with a high-speed digital
computer. In Machine Models of Music, S. M.
Schwanauer and D. A. Levitt, Eds. MIT Press,
Cambridge, MA, 9-21.

[21] Huron, D. 2006. Sweet Anticipation: Music and
the Psychology of Expectation. Cambridge
MA: MIT Press.

[22] Lerdahl, F. 2001. Tonal Pitch Space. NY, NY:
Oxford University Press.

[23] Meyer, L. B. 1956. Emotion and Meaning in
Music: Chicago: University of Chicago Press.

[24] Nilson, Click. 2007 Live Coding Practice.
Proceedings of NIME New York.

[25] Rowe, R. 1993. Interactive Music Systems:
Machine listening and composing. Cambridge,
MA: MIT Press.

[26] Sorensen, A. and Brown, A. R. 2000.
Introducing jMusic. In A. R. Brown and R.
Wilding (eds.) Proceedings of the InterFACES:
The Australasian Computer Music Conference.
Brisbane: ACMA, pp. 68-76.

[27] Sorensen, A. 2005. Impromptu: an interactive
programming environment for composition and
performance. In Proceedings of the
Australiasian Computer Music Conference,
2005.

[28] Sorensen, A. The Impromptu programming
environment: http://impromptu.moso.com.au

[29] Straus, J. N. 1989. Introduction to Post Tonal
Theory. Prentice Hall College Div.

[30] Taube, H. 2004. Notes from the Matalevel:
Introduction to Algorithmic Music Composition.
London: Taylor & Francis.

[31] Temperley, D. 2007. Music and Probability:
Cambridge, MA: MIT Press.

[32] Winkler, T. 1998. Composing Interactive Music.
Cambridge, MA: MIT Press.

[33] Wang, G. and Cook, P. R. 2003. ChucK: A
Concurrent, On-the-fly, Audio Programming
Language. Proceedings of the International
Computer Music Conference. ICMA, pp.
219-226.

[34] Xenakis, I. 1992. Formalized Music: Thought
and Mathematics in Music. Stuyvesant NY:
Pendragon Press.

http://journal.media-culture.org.au/0612/03-brown.php
http://journal.media-culture.org.au/0612/03-brown.php
http://journal.media-culture.org.au/0612/03-brown.php
http://journal.media-culture.org.au/0612/03-brown.php
http://impromptu.moso.com.au
http://impromptu.moso.com.au

